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*
Learning Models and Keal-time Speech Recognition

Douglas G. Danforth, David R. Rogcsa,
and Patrick Suppes

1. INTRODUCTION AND THEORY

In October of 1972, the decision was made at the Institute for
Mathematical Studies in the Social Sciences (I!SSS) to use psychological
learning models on the problem of computer recégnition of lwwran speech,
In this investigation of speech recognitica we used the standard home
telephone as an inexpensive terminal for verbal communication in dealing
with an educational curriculum, such a=z mathematics. In subsequent
pages we describe mathematical learning models and some of their pro-
perties, their implementation as part of a speech recognition system,
and a series of system experiments with children as subjects.

Speech recognition can be viewed as three separate processes: (a)
the internal représentation of each uttereznce, (b) the actusl recogni-
tion process, and {c) the change of the in:t=runal representation upon the
discovery of errors by the recognitinn process (learning). Tn our
approach, the representation of each viterance is given by a vector of
numbers U. These numbers are che digitized amplitudes and frequencies
from three band-pass filters that take ac input the analcg signal from,
say, a trelephone (see Section 2), 1In this stﬁdy we deal only with re-
cognition of individual phrases, and ccnsequently, each utterance may be
normalized in time to a fixed length, 0.50) secs. Our recognition prozess
vtilizes what can be called the nearest neighgfc approach. A metric
(see below) is introduced into the space and a distance 1s calculated
from the unknown utterance U to each of the members of a set of vectors

*This research was supported by National Science Foundation Grant
EC 443X4,



RERPENY

{V} representing known phrases; the name of the V closest to U is

assigned to U, e

1.1 Theta Process

Upon the discovery that U was misclassified, the correct vector V
iz updated using the following learning model. Let 0 < § < 1 be an
arbitrary szalar parameﬁer and let V be the old vector representing the
word from which U is a sample. Then a new V xepresentation can be con-

structed from a weighted average of U and the 5id V, namely,
V <= (1-8)*%V =~ 0*U. '€}

Note that as 6 ranges from zero to one the new representation ranges
from V to U. This model, called the theta prccess and pacterned after
psychological models developed by Bush and Mosteller (1955) and Estes
and Suppes (1959), is one aspect of our learning approach to speech re~
cogniticn. Let us now investigate some cf the properties of this linear
leatning mcdel. In what sense does V 'represent' a word? If U 1s con=-
sidered a random sample from a population with mean vector M = EU, where

E stands for expectation, then
EV <~ (1-8 )*EV + §*EU, (2)

If we 1nitialize the representation V to the first-heard utterance from
the population; then by a simple inductive argument we find that EV = M
too, so that V is an unbiased estimate of the mean of the population to
which U belongs. It is well known that the sample mean is also an un-
biased esrimate of the population mean. However, V has the property of
giving greater weighct to recent utterances than to earlier onesc. This

2



responsiveness of V is useful in prcviding a more accurate representa-
tion of the speaker's current pattern cf speaking.

It is of Interest to consider the dictance of & sample U of the
populatién to {its representation vecter V so as to determine the
likelihood of correct classification. Let d(U,V)} ba this distance and
Ed(U,V) its expected value. If we assume a Euclidean metric and inde-
pendent, identically distribuced (i.i.d.) random samples U, it can

easily be stown that this distance on the nth triai is given by

2n-1
1+ (1-98) (3)
Ed(U,V) = 2 =-memeemee * EAd(U,M), n=1,2,...
14+ (1-8)

where Ed(U,M) is unknown but independent of 6 and trial number. Thus
we have an expression for the expacted distance between a memper of the
popglation and its representation vector V. Figure 1 shows explicitly
the functional form of Ed(U,V)/Ed{U,M) for the cases where n=10 and

n=50.

Insert Figur-e 1 about here

Equation 3 gives the expscied dlstance as a functisn i n ane 6.
The minimum of Equaticn 3 may be cbralned by settiing its derivavive

equal tc zers. By fixing a and solving fcr § fa this expression, th:

<

value: presented in Table 1 were cbtained. Note that n set Lo 2eis sig-

nifies V = U initially. This table is ccnsidered later in the experi-

e e L

-

mental sections with regard to the avror rate of 2lzssification.
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Fig. 1. The above plot displays the 2xistence of very pronounced
minima at 6=0.166 for n=10 and at 6:=0.051 for n=50. Minima <uch
a% lhese occur for eéch trial number n. When 8 assumes one of thee::
minimizing values, it is reasonables to Ybelieve that the probability of

an utterance being correctly classified as V 1is maximized.




TABLE 1
Values cof Theta Which Minimize the Expescted Distance

as a Function of n

n | &
11 1.000
2 1 0.472
3 | 0.387
5 | 0.252

10 | 0.166 (see experiment 2A)

15 ] 0.126
20 | 0.103
25 | 0.087
30 | 0.075
35 | 0.068
40 | 0.061
45 1 €.056

SO | 0.05% (see experiment 1)




1.2 Delta Process

The theta process is essentially an estimate of the first moment of
the pop.ulation° In the standard problem of statistical classification
(Anderson, 1958), estimates of the covariance matrix are necessary to
determine a hyperplane separating two populations. In order to avoid
the inversion of a full covariance matrix, which is necessary with the
classical Baysian procedure, one may use other less precise but, compu-
tationally more efficient techniques. One qf these, which we call the
delta process, estimates the variances of the utterance components. Let
5 (delta) be a parameter that lies in the interval 0,1 , then S2 given
by the learning equation

s? < (1- )xs? + gr(U - )2 ()

i{s an estimate of the component variances, where U,V are as before.

Using the two quantities V and Sz. we may calculate a 'distance’ .

between the utterance U and a representation vector V by

DY) = U)W Uy, (T=Transpose) (5)
whare
W= A, (Tr=Trace) (6)
TrA
and
2, -1 2 187 0 (7
A = diag(Ss") , diag(8”) = 82 .
0 S 2
n

which differs from the,ﬁuclidean distance d(U,V) by the replacement of
I (the identity matrix) by W. Notice that components with high varia-

bility are weighted less than those with low variability,.
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1.3 Becs Process

Alt2rnativaly, we may introducs <he corcapt of & strength asso-
¢ilaced with each component of V and then increase our decrease its value
depeading upon whether that component c¢crrectly or incorrvectly classi-
fies an utterance. Let L be a vactor of streagths associated with V.

Then Li can be changed by multiplyiaz by a gquantity ﬁl (Beta) such

C<- AL
Ly < ‘31 Yy (8)

Thus, By > 1 1f L 13 a gocd component and 51” if 1t is bad, (Eg. 10}
The weights subseguently associated wizn the ccmponents of V are related

t2 zhe strengths rhrough normalization, unamely

W= A 6';
Iz
where
A = {(diag L). {3
Again the direxancte betwsen an uttzranie snd 2 rerra2sentation vectow V o1z

A gozd corrpoteat ie dafined vhen aa ersur In classilizstion nes vocured

Ler V' be the incc¢ieitly chosen :eprz<entatiocn vertsy awd V che true

=

vesros with which U sheutd be ddenvifisd  Then component i is gecd if

U~ LW fU=vY o« -y L w! -y 1) 103
U x)i~1ltU v,i (U-V 'y 1‘__(L y i Ci0;

and bad stherwize. Changing the strangune oy Equaction B is Luze': bels



prccess, which has been studied extensively in Lamperti and Suppes
(1960). We call the combined processes (theta,delta) the delta model

and those of (theta,beta) the beta model.

1.4 1Internal vs External Learning Models

Our use of the deita and beta models is at variance with what is
usually done in the psychological investigation of human learning. A
task is presented to subjects, and a mean learning curve 1s obtained by.
measuring the average number of correct résponses as a function of the
presentaticns of the task (rrial number). A theoretical model is then
proposed as a possible explanation for this correct response curve, and
the parameters of the model are estimated from the data. We may con-
sider such models 'exterral' models. In contrast, we specify explicitly
the internal responss processes. Censequently, the delta and beta
models, as used here, may be considered 'internal' models. The theoret-
i2al link betwecen the internal-external responses of the machine is
suggested in Sections 3.4 and 4.3 chrcugh the comparison of the minimum
expected distance of an utterance o its representation vector and the
measzured error rate of experiments 1 e&nd 2. Fuzther theoretical inves-
tigation of this link is underway. Section 4.2 and 4.3 discuss the
application of an external model to the learning curves cf experiment

2A .
2. TIMPLEMENTATION

An overview of our speach recognition system is presented pictori-
ally in Figure 2, A call placed from a standard home telephone to an

3



Institute number is automatically coupled with an Institute high-speed

line that feeds the analog signal to our hardware filters. These fil-

it ey e - e U

Bt o G s G s o e i it O Bt B St Y e oy P S Gt B et o i G

ters are patterned after those‘used in Vicens (1969,1970) and consist of
three snlid-state band-pass filters whose rangeé were chosen to approx-
imatekthe human formant structure--150-900 Hz, 900-2100 Hz, 2100-5000
Hz, reégzsiively. Since the telephione frequency response 1s in the
range 300-3000 Hz, our filters adequately span this interval, The
output from each of these detectors then‘is amplitude and frequency
sampled at 10 msec intervals and the digitized results are shipped by
high-speed line to our PDP-10, This is all done in real time.

The raw, digitized utterance data flows into an internal buffer
until the hardware stop; transmitting, which occurs whenever the input
analog signal falls below a hardware specified threshold for longer than
a hardware specified time. The buffer is dumped when the flow of input
data ceases. The dumped data are then reformatted and time and ampli-
tude normzlized for return to the recognition programs in a convenient
standardized form. The form is a vector of 300 numbters, (3 amp + 3
freq)*{100 samples/sec)*(1/2 sec).

The recognition process simply entails calculating the distance
from utterance vector U to each representation vector V of the vocabu-
lary, that i{s, calculating the weighted sum of squares of component
di{fferences, The word with the minimum distance is deemed the best

choice. The recognition ratesis such that some 30 words per CPU second

9



Speech System Overview

Home IMSSS Speech Software Speech
telephone~~->automatic--->havdware--->PDP10--~>normalization~~->recognition
telephone filters program programs
coupler
Curriculum
'
High-speed line Audio Audio
K e connection to----- oo D/A~===- <---output
telephone converter  programs

Structure of Recognition Programs

Incoming normalized utterance vector

v
Distance calculator
(to all members of the vocabulary)

v
Nearest neighbor choice

v
Validation

v
Learning algorithm
(theta with delta or beta)

Fig. 2. Ovcorview of speech recognition system,

i0



can be compared. In experiment 2B, where a 14 word vocabulary is used,
actual recognition times in a time-sharing environment and optimal rec-
ognition times are comparable (about 1/2 sec).

Changes of the internal representation of the word spoken are
accomplished by the learning algorithms based on the theory previously
described. Specifically, this entails modifying each component of the
representation vector V and its associated strength vector (S2 or L).

The programming requirements of the two models are quite minimal.
The programs are written in SAIL (Stanford Artificial Intelligence
Language), which is a superset of ALGOL. The full curriculum of exper-
iment 2B occupies, when running, only about 35K of core memory including
the child's state vector (see Secs. 4 and 5), the recognition élgo—
rithms, and the audio output routines.

The production of spoken output 1s presently accomplished by re-
trieving digitized representations of the words stored on magnetic disk
and by software regeneration of the analog signal. Again this audio
process is executed in real time. Consequently, the interchange between
student and computer is sufficiently fluent for smooth verbal communica-

tion with the educational curriculum. '
3. EXPERIMENT 1

3.1 Description
As a first quick test of the models, two highly confused utter-
ances, the letters B and D, were chosen. Fifty utterances of each

letter were spoken into a high quality crystal microphone and recorded

T



on disk in their digital form, after having passed through our hardware
filters. These utterances were then cycled 10 times, in :helr original

order, through the delta and beta models.
3.2 Delta model

The parameters # and § for the delta model ranged in the inter-
val 0.1,1.0 and 0.1,0.4 , respeziively., Larger intervals were not
used as the basic structure of the delta model was revealed in this

range. Table 2 gives the results of the percentage of ccrrect classi-

fications (PCC) for the grid space. Note that under these somewhat

B e e ]

- 1t B g B it Bt A o

artifical conditions the delta model performed well with a regular

structure and a recognition rate of 96 percent at 6=0.1 and 6=0.1,

3.3 Beta Model

Tabie 3 shows results of the beta model using the same data. Note,
at least in the preliminary test, o somewﬁat poorer perfoimance (81
perceant 2t £=0.1 and B=1.1) with less regularity of structure than the
delta model.

o ot S T g B o S . e B

3.4 Theta Process

A different, but similav, set of data {50 utterarces each of B and
D) was used to examine the theta process by itself. Again the data were

12



TABLE 2
Percentage of Correct Classification,

Delta Model

e " o S o o et e S eh o e S0 G o e s B o Do o Gk ¢ e S i T i e e S e M o S D o S P e B B R

.10 .20 .30 .40 .50 .60 .70 .80 .90 1,00
Delta ->

+ not processed.
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TABLE 3
Percentage of Correct Classifications,
Beta Model

Beta
1.0 1.1 1,2 1.3 1.4 1,5 1.6 1.7 1,8 1,9 2.0

70 1 64 66 63 75 57 59 74 56 61 54 71 |
.60 ' €9 69 71 56 58 55 56 68 53 S8 60 |
.50 | 64 73 65 58 58 62 58 59 59 53 66 |
40 173 72 72 62 64 60 66 54 S8 70 75 |
.30 170 74 66 69 78 68 64 78 53 53 76 |
20073 76 62 64 70 62 63 79 66 77 77 |

10|76 81 78 63 62 58 79 81 79 79 79 |

b G G Gt o Gt S Gl o Gt G o e G G e et et A e S A T e Gk e S G G iyl T et e G e

+ not processed.
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cycled 10 times using *he beta model with £ set to one (i.e., no
change of strengths), and ailowing 2 to vary from O to .1 In steps of

.01 and from .1 vo 1 in steps of .1 . The form of che curve in Figure

3 and the cccurrence of the minimum at .045 for ¢, after 50 distinct
trials, corresp»ad closely to th2 prediction of Figure 1 for the minimum
distance to the representaziown vector; however, the similarity oi error
rate and expected distance is blurred by the fact that the 50 distinct
utterances were presentaed ten times to the learning model. It~ 2sn-be
after 50 distinct trials, correspend closely to the prediction of Figure
1 for the minimum distance to the representation vector; however, the
similarity of error raté and expected distanca is blurred by the fact
that the S0 distinct ucterances were presented ten times to the learning
model. It can be considered, hewever, tunat each cycle is a sequence of
50 dist’nc: utterznces differiag only in the starting conifiguration.
This vrelimirary 2xperiment sheus premice for the leerning-mcdel
approach <o sprach venognition (deI{a aodel 96 zavecent) and indicates

that the tpeca process s amcnable to relstively simple anz.ysis (error

rate ard expecered distarce similsrizy?,
4. EXPERTMENT 2. PART A

4,1 Descrip:ien
Ta an a7for: ¢ nmravide a preerical resc of the two modals under

actual operating conditicas of celephvrne transmission and recepticn, we
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designed and executed an experiment of two parts (A and B). In A we
acquired a data base of 14 children's voices spoken over the local Palo
Alto telephone system, The telephone arrangement, described in Section

2, entailed calling a local Palo Alto number ccnnected to the Instituce

‘frem a university extension. The Ehildren, 3 girls and 11 boys, ranged

in age from 6 to 13 years. A 1l4-word vocabulary (consisting of. the

'
digits 0-9 and command words yes, no. repeat, and stcp) was cnosen for
compatibility with an elementary mathematics curriculum, Diz ;AnDrill
(Computer Curriculum Corp., 197%). In the experimen® the vocabulary was
presented sequentially on a cachede-vay tube terminal and was vepeated
by the child into the telephone for a :otal of 11 repetitions of each
word. The time and ampliitude normalized form of each utterance was re-
corded on magnetic disk.

For the analvsis. the data were zequentially preserted to the peta
and delta leavniang mcdels in a machine rapreseatacicn of actual speaking
cond1eicns, A paeremeter grid sSpoc2 was ancpnod Tov canh model (Fiasooo,
connritien crtes weve examinnd o getzomine the optiody

7Y and the te

‘

ficaiion

s

¢.2 learning Curves of Correct Class
Wa can represeni rhe fesults of this experiment by leavnuing curves
for beth the del:ca and betz nodels To form each learning curve, we
combined each of the 14 subjects zud their 14 :esponses per trial to
form a learning curve with ten pcints, with each point representing 196
subject-items on that particular c¢ri1al. Since we have 11 repetitions of
the vccabulary for each child, each learaing curve hes tea data points.

17



As an illustration that actual machine learning is taking place, we
examine these curves in the ccntext of mathematical learning theory. In
order to avold imposing a specific ‘exterral mcdel' on the learning pro-
cess, we examine the mean learning curve, since the same mean learning
curve can be generated from a wide variety of models. When we define
the asymptotic response probability P(ccrrect)= n (as n goes to
infinity), a 'guessing' parameter Py and a learning parameter 0<X<1 we
6btain the mean learning curve

Pfcorrect cn trial n) = p - { n—pO)Xn-] . (11

In Figure 4, we see that the learaing curve for the delta model

attains a2 value of ab:zut 95 percent correct responses. The deviations

- 0 o ot T o S B ¢ e S S P it e e

——— B e B e T e B S G B

of recognition rates from the zverage across children are indicated by
the + one standard deviaticn error bars for each trial number. The
shape of the learning curve indicates that at least five repetitions of
the vorabulary are necessary fcr a high recogaition rate. As shown in
Figure 5, the learniung curve for the beca model reaches 91 percent

correct responses, which is lower than the delta model.

"t e e S B S

e - o T e o b e ot B

4,3 Regression on the Learning Curves \
Since we are considering the general mean learning cugcve indepen-
dent of a specific learning model, we will not 2stimate the pavameters

18
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of the‘curve in the conventional manner, using maximum likelihood esti-
mators or othér statistical techniques based on predictions of :the par-
ticular learning med=l {Atkinson et.al.,1965), Instead we approach the
problem of paramerer estimacion as a regression protlem, with the mean
learning curve of the form Y = bl + b2 Z where b1= Ty b2=po— m  and

z=x""!

. Regression analysis fot maay values cf X were performed on the
learning curve Jdata and the bast fits, as determinad by *he R” and
standard error of estimate statistics, were used to estimete the para-
meters { n,po) of *he mean learning curve.

For the delta mecdel the maximum R2 statistic was .9/6 with an
associated F value ¢f 326 testing the statistical signif.:ancz of the
regression coeficients, and a :ttandard error of estimztion (s.e.e.) of
.024, For X=.61 the parameter estimates p and Py were ,923 and ,477
respectively. Also, for X=,771, sz.937 and s.e.e=,039 with F value
119, Here the parameter estimates wers 1=,.99%4 and p0=.53, Thus,
the regresszon analysis of the delta model learning curve yields an
asymptotic tecognifion rate abcve 92 percent with a 100 percent asymp-
totic raccgalilon rate also giving a good fic te the learning curve.

Fo: the beta mocel Jearning curve, simlilar anaiysis gave the
greatest R2=,969 with s.¢.,e.7,02 and F=247, Hz2rz X=.72, r=.914 aund

2

=,.362, X=,90, R'=,80, s.e.e.=

]
(]
o

po=,572. The lergest n was .94 with Po

.025, and F=159., Agein asymptotic racognition rates avbove 90 percent
were found with the best fit at 91.4 percent aud the maximum asymptotic
rate of 94 percent with significant I values.
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4.4 Parameter Grid Spaces

For simplicity in computation and discussian; we us the average of
the ninth and tenth trials as the asympc¢otic approximation, although one
cannot be certain that asymptote has been reached by the tenth trial.
In our discussion we consider two different asymptotoic maxima, the group

. asymptotic maximum displayed in the learning curves and parameter grid

spaces and the individual asymptcilc maxima shown in Ehe later figures.
The grcup asymptotic maxima are obtained by averaging cver the subject's
individval asympcotic recognition rates for each grid point and seleci-
ing the maximum, while the iﬁdividual maxima are simply the best asymp-
totic recognition rates for each child in his parameter space. The grid
prints for individual maxima may or may not coincide with the points for
the grbup maximum. We use the group asymptocic value as our recogunition
rate, although the mean of the individual.maxima is greater, in recog-
nition-of the importance of a single parameter setting generalizable
ecross children.

To further illustr. ke the struc:ure of the delta model, censider
Tabie 4, which shcws the percentage of asymptotic correct classifica-
tions averaged over the 14 subjects as a function of the parameters 6

and 6&. The parameter space displays a definite and reguiar structure

" —— i " - s D g 70 o

Insert Table 4 about here

—— . g o ot S D e i - T e W

for the delta model. The group maximum is 94.1 percent at grid point
g =4, 5§=.1.

Similarly, we display in Table 5 the structure of the asymptotic
percantage of correct classificavicen over a grid of parameter set;ings
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Table 4§
Asymptotic Percentage of Correct Classifications,
Delta Model
- . Delta
0.0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Thetad ~=ecem e e
1.00 178 78 78 78 /8 78 78 78 78 78 68 |
.90 | 79 82 8 87 87 88 82 68 50 40 37 |
.80 | 80 88 89 .89 89 8 77 62 47 41 36 |
.70 1 82 8 91 91t 8 84 71 56 44 39 36 |
.60 1 83 91 92 91 88 82 69 53 43 35 36
.50 | 83 93 92 90 89 8% 66 63 41 34 41 |
40 | 85 94 92 9t 88 79 65 49 39 37 36 |
.30 | 86 94 92 90 87 79 62 45 40 38 38 |
.20 | 87 92 92 90 85 74 56 44 42 39 40 |
10 | 8 91 90 89 81 69 52 43 41 37 40

06 | 59 87 86 83 71 61 48 44 40 37 49 |

T —— - typ o S T v " T . et 8 v s P S e e G o Sy Gt T e ey S s S e T o et T e o S8 Gy
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for the beta model. The parameter space for the beta model is notice-

P s e ey e G G e n B Bt e s o

Insert Table 5 about here

s P S s O o St S0 e .

ably flat even out to values of §=5.0. The group maximum 1s 89.8

percent at grid point (0.3,2.,2).

4.5 Theta Process
Again we coasider the theca process alcue. Figure 6 gives the
error vate frvom column one cof Table 4 ( 6=0). We note that to the
ccuracy of the curve the minimum occurs a¢ the same value of theta that
Table 1 predicts for the minimum of the expected distance of an utter-

ance vector to its representation vector on the tenth trial. This stri-

.
g | . o o 0 o o o Wt W st W

. | " s (S e N W e e S

king correspondence between the minima cf the error rate and the minima
of the expected distance lends strength to analysis in terms of dis-
tarncas, Note that this analysis nolds for two dissimilar situations,
experiment 1 with a 2-word Vocabulary and experimgnt 2 with a !4—word

vocabulazy.

4.6 Individvai Asymptotic Maxima

So far we have been considering thez group asymptotic maximum using
one grid point for all subjects. This is Important from &n operational
point of view, since when dealing with many children in a CAL curriculum
it would be vsz2ful to have a gene;al parzmeter setting good for all
students, In Figures 7 and 8 and Tables 6, 7, and 8 we examine distri~
butions of individual maxima cver the parameter space in a further com-
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Table 5
Asymptotic Percentage of Corrvect Classifications,
Beta Model

. Beta
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

.70 | 82 82 82 83 83 82 83 83 8 83 84 83 83 |
.60 | 83 83 84 83 83 85 84 84 84 83 84 84 84 |

.50 ‘| 8 84 84 85 86 85 86 86 86 87 87 87 87 |

.30 | 86 87 87 87 88 87 88 83 8 89 89 89 90 |
.20 | 87 88 88 89 838 88 88 88 88 88 88 88 88 |
.10 | 84 84 84 85 86 86 87 87 87 87 87 87 87 |

.00 | 58 62 63 64 67 67 68 68 68 70 69 69 71 |

" o e o Gt S e G O e e o e P S Gk o o A Sl A S S Gk D T G i o s S
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Fig..6. Error-rate curve for the +theta procezs alone. Note the
agreement of the mininum with the prediction of Table 1 for the minimum

of the expected distance of an utterance vector Lo its representation
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pariscn of the beta and delta models. We see in Figure 7 a 3 percent

- - " —— o ——— 1 0

- . "t s O o o e e P e €W

overall improvement for the beta modei with individual improvements of
as much as 13 percent for one subject whan individual maxima are used
instead of the grour maximum. For the delta model the improvement was
only 1.6 parcent with the largest individual improvement being 3.6 per-
cent, As can be seen from Tables 4 and 5 the delita wmodel displays more
regularity of structure about its group maximum than the beta mcdel

does,

4,7 Comparison of Individual Maxima for Beta and Delta Models
Note in Figure 8 the delta mcdel doss as well or better than the

beta model in every case but one ia this comparison. If we compared the

. —— T A - ——

s - o —— T - — > Y -

individual asymptctes at the group maximum the delta superiority would
be even greater. Hence, fiom these data from 14 children, we conclude

that the delta model produces better racogniticn than the beta model.

4.8 Distribution cf Opiimal Paramzter Setrtings

The distribution of optimal set.ings in the paramester sgace for the
rwo models 1is displayed in Tablzs 6 and 7. Foxr the delta model the
asymptotic PCC for the grid poin:t 8=.4, &=.1 is consistently close to

the individual maximum value for all subjects. Nine subjects attained

- e - v e - - - —
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Delta Model

6
5 e
4 e Y X
3 v Y b
2 Y
1 X o : X
L el e e fm————————— pom e ———— P .
80 85 90 95 100
PCC -> mean=95,7
” Beta Model
5 Y
4 Y
3 X X
2 X X Y X
1 X X X X Y X
L el e T e P ————— P —————— e —me——— (mm——————— .
70 75 80 85 90 95 100
PCC -> mean=92.6

X=male subject
Y=female subject

Fig, 7. Distribution of individuval maximum asymptotic

percentage of correct classification for the Delta and Beta models.
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TABLE 6
Distribution of Optimal Parameter Settings,
Delta Model |
Delta

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Theta ~ec—m o e e e e
1.00 | ' !
.90 | 1 1
.80 | |
.70 | 1 I
.60 | 1 \
.50 | 2 | |
40 | 9 ‘ |
.30 | 1
20 | 1 (
.10 | I

-OO ! ________________________________________________________ ’
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individual asymptotic maxima at this grid point, the group asymptotic
maximum. For the five subjects who had different individual asymptotic
maxima, the difference between their maximum recognition rate and their
recognition rate for the grid point 6=.4, &6=.1 1s only 3.6 percent for
each subject., The beta model (Table 7) again shows more range and less
definite structure than the delta model with 8 of 14 subjects having

individual maxima distinct from the group maximum.

- — - — " — " —— T

4.9 Age Dependancy of Recognition Rate
From the results in Table 8 we can determine almost no age depen-
dence for the recognition rates of children in the age range of 6 to 13

years old.

—— et " - o — o Gt WD o i s

o . G . S

S. EXPERIMENT 2, PART B

5.1 Description

The follow-up experiment was designed to determine whether or ﬁot
the results of 2A had valid correspondence to actual working conditions
of real-time recognition in a child's learning situation. It entailed
investigating recognitiocn fates for a telephone CAI mathematics curricu-
lum with avdio output based on Dial-A-Drill (Computer Curriculum Corp.,
1971), which incorporates the delta model into tha learning scheme. The
system preéently runs in a fully automatic mode in that a telephone call
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TABLE 7
Distribution of Optimal Parameters Settings,
Beta Model

Beta
1.2 1.3 1.4 1,5 t.6 1,7 1.8 1,9 2.0 2.1 2.2

.70 | I
.60 | |
.50 | I
.40 1 1]
.30 | 1 6 |
.20 | S I T
.10 | ‘ 1 1|

.00 | |

S e G S g e G Lt G e G e D G G e e U G e G R et ety T gy o D Gt S Sy G R s N e e g
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TABLE 8
Distribution of Individual Maximum Asymptotic PCC

as a Function of Age

Delta Model

Age of Subjects

6 7 8 g 10 1 12 13
PCC mm e e ot e e e e
100 X X XX X
8
6 Y XY
4
2 X X Y
90
8
6
4
2 X
L e i
2 Beta Model
Age of Subjects
6 7 8 9 10 11 12 13
PG = m e e ot e e e e e e
100 X X X
8
6 Y Y XY X
4
Py X X )
90
3 X X
6
4
2
80
3 X
6
4 X
2
70} e
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placed to (415) 321-TALK is automatically answered by a coupler that
connects the gutside phone line to an Institute high-speed data line
(HSL10). The TENEX executive program of the PDP-10 has been modified so
that upon sensing the input data over HSL10 it vfll log in a job and run
a prespecified program.

The mathematics curriculum is extremely simple., It uses only the
14-word vocabulary described in the previous experiment, and randomly
generates five types of questions (sum, difference, product, integer
division, and ratios), The computer-student dialogue consisting of
these arithmetic questions, produces audio output that 1s accessed
quickly from magnetic disk and transmitted to the student over the

telephone.

5.2 Dial-A-Drill Curriculum Structure

The cuzrizulum structure is indicated in Figure 9. A typical seg-

meni of the dialcgue could consisz of the following:

COMPUIER: WHAT IS 7 MINUS 3 7?

STUDENT: 4 .

COMPULER: YUP, THAT'S RIGHT. Path ending at 1
(see tree)

COMPUTER: 6 OVER 3 IS WHAT ¢

STUDENT: 2

COMPUTER: DID YOU SAY O 7

STUDENT: no

COMPUTER: SORRY, MY MISTAKE. PLEASE SAY 2,

STUDENT: 2

COMPUTER: THANK YOU! Path ending at 2

COMPUTER: 5 TIMES O 1S WHAT 7

SIUDENiI: 5

COMPUTER: DID YOU SAY S5 7

STUDENT: yes

COMPUT%R: TGO BAD, 5 TIMES 0 IS 0. Path ending at 3
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Question
|

|

"Yup, that's right" +n +y "That's
(learning) / \ / \ right"
Y / N Y/ N

1 {incorrect
/ learning)
/ +n
/ /
"nope’ "Too,bad" / N
3 Y/
"mymistake"
"mymistake" ""please say *"
""please say *" (learning) '"nope"
(learning) "mymistake"
2 "please say *'"
(learning)
SYMBOLS
A Correct answer given by child
-A Incorrect answer given by child
R Recognized by computer
-R Misrecognized by computer
+ Node
+n Node with "no" response 2lways
+y Node with "yes'" response always
Y Computer thinks yes was said
N Computer thinks no was said
* Correct answer (to be repeated by student)
Fig., 9. Tree diagram for learning in the mathematics curriculum.
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Each of the above three dialogues can be represented as a path along the
learning tree shown above., We use noncontingent learning for the delta
model on all correct responses and also update the representaticn vector
on all requested repetitions. fhe one possible incorrect learning node
on the tree was not realized in practice,.

Seven subjects from Part A each answered 100 mathematics exercises
from the curriculum. The recognition mechanism was loaded with a state
vector for each subject obtained from che data of Expériment 2A using

the delta model at the optimal parameter settings.,

5.3 Comparison of Parts A and B

The resulting recognition rates for the telephone curriculum are
shown in Figure 10 and average 13 percent below the best recognition
rates for the subjects in Experiment A. The decrease in.recognition
rates in Part B can be accounted for by educational and psychological

factors. We did not have an introductory session to acquaint the child

- — i — o " — - s o 20
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with the system. Also, in an effort to approximate natural home condi-
tions we gave no instructions to the child about speaking carefully.
When faced with a mathematical question instead of a mere request to
repeat a number the student sometimes stammered or changed his mind in
the midst of an utterance (e.g., '"ONE-~NO-TWO!"), which had obvious de-
grading effects on the recognition rate. Observe that even under these
conditions the recognition rates are all above 75 percent.
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Experiment A ->
'Fig. 10, Comparison of- recognition rates on experiments 2A

and 2B for the seven subjects completing both experiments.
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S 4 Confusion Matrix for Experiment 2B
In Table 9 we present a confusl’on matrix of the numbers 0-9 for the
seven subjects in experiment 2B. Fach element of the confusion matrix

(cij) represents the number of events where the utterance was 1 and the

- 1 B et ot e o

- ———— " —— 2 = S

classification was j. Thus the matrix entry c indicates the number

2,0
of events where 2 was sald and the computer misclassified the utterance

as 0.
6. SUMMARY AND CONCLUSIONS

We have constructed and tested two models of learning processes for
the purpose of computer recognition of human speech over the telephone.
The delta model was found superior to the beta model in all comparisons.
For the delta model a regression analysis on the learning curve yielded
a 92.3 percent recognition rate for 14 subjects ranging in age from 6 to
13 years old. When the individual approximate asymptotic ma#ima are used
the recognition rate climbs to 95.7 percent. All the recognition was
done using a standard home telephone.

It should again be emphasized that we are conducting real-time re-
cognition in a time-sharing environment withoutr any linguistic restric-
tions and with relative computational simplicity. Consequently, the
system can be used on any language from Swahili to English.

We also tested the recognition system on an elementary mathematics

: curriculum conducted entirely over the telephone in Experiment ZB From 1,73

our observations we found that the children seemed quite tolerant of

38




TABLE 9

Confusion Matrix for Experiment 2B

0: 15¢ 2 8 0 1 o 2 0 o0 O
1 3729 2 0 8 2 0 1 0 5
2! 12 0 64 1 0 0 2 1 0 O
3: 2 1 1 45 0 O 1 1 3 0
b4 3 2 1 0 5 0 1 0 o0 O
5: 0 7 1 o 1 3 0 1 o0 8
6 2 0 3 0 0 0 42 0 4 O
7 2 1 2 0 0 O 1 38 0 O
8: 4 0 1 3 0 0 3 0 40 O
9 c o 0 2 0 o0 0 2 0 27
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nonperfect recognition and, indeed, were amused when the computer made
a mistake. |

In our efforts we are approaching speech recognition from the «i-
rection of machine learning. In analyzing experiment 2A we see that
learning indeed occurs and is amenable to theoretical analysis for the
purposc of predicting the learning performance from the structure of the
model. Future efforts will be directed toward deriving the exact form
of this performance and toward making deeper comparisons with human

learning theory.
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- o APPENDIX

Previous Speech-Recognition Work at IMSSS
Camille Bellissant
.Stanford University

1. INTRODUCTION

The aim of this work was to run some preliminary experiments using
audio for both input and output in & computer-assisted instruction (CAT)
program,

The output part, i.e., speech production, was handled by an exis-
ting program that gives good results for short sentences. The produc-
tion is not done by synthesizing but by digitizing spoken words which
are later concatenated to produce a sentence. The random access to the
digitized recordé on the disk allows quick retrieval and, when the com-
puter is not ovefloaded, permits a continuous audio output.

For the input part, i.e., speech recognition, it was decided to
begin by adopting the system developed by Raj Reddy and Pierre Vicens at
the Artificial Intelligence Project, Stanford University (Vicens, 1970).
This choice was justified by the effectiveness of the system for recog-
nizing isolated words belonging to a small vocabulary (about 50 words,
which is large enough size for our purpose).

In the next section we describe the Vicen's program and our modifi-

~cations of it.
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2., THE MODIFIED VICEN'S PROGRAM

In his thesis, Vicens (Vicens, 1969) presents the techniques and

methodology he used in building the system,

2.1 Preprocessing.

The audio message tc be recognized is first preprocessed by hard-
ware, Three filters (150-900 Hz, 900-2200 Hz, 2200-5000 Hz), correspon-
ding roughly to the first there foruwants of voice, and an analog to
digital converter produce for each frequency band and for each sample of
10 ms of sound the maximum amplitude (peak to peak) and the number of
zero—croséings of the amplitude-time function. The data are transmitted
through a high-speed line to the soﬁ:ware préprocessor, which normalizes

the amplitudes.

2.2 Segmentation.

After the hardware and software preprocessing, the data are treated
by the segmentation prccedure. This consists of grouping the minimal
segments of 10 ms into wider segments presenting roughly the éame acou-
stic characteristics (sustained segments) and isolating the others into
transitional segments.

Although some errors can occur in this grouping, and a secondary
segmentation procedure corrects the possible errors by locking at the
variation of parameters in the sustained segments and at the local max-
ima and minima of the amplitude parameters in the transitional segments,
If the variation of parameters in a sustained segment exceed;,a certa1n‘

limit, or if a transitional Segment presents a local extremum, the seg-
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ment 1is divided into smaller ones.

The last part of the segmentation is the combining process whose
purpose is to group together acoustically similar secondary segments.
The sustained segments are extended onto the transitional segments 1if

“he parameters are too different,

2.3 Classification.

After the segmentation process, most of the transitional segments,
which do not contain pertinent information, are eliminated. The purpose
of classification is to assign linguistic labels to the sustained seg-
ments. The phoneme groups are fricative, vowel, stop, consonant, nasal,
and burst. The vowels are subheclagsified into nine categories with re-
spect to their zero-croésing parameters, The discrimination into pho-
neme groups is accomplished by comparing the amplitude and zero-crossing
parameters of the segments with known values in acoustic phonetics.

The results of the previous processes are summarized in an internal
representation of the speech utterance that is used for all the storing,

retrieving and matching processes.

2.4 Recognition.

The recognition of words is accomplished by retrieval of previously
learned messages. This learning consists of reducing the internal rep-
resentation of the speech utterance and storing the reduced form in a
dictionary. The size of such a reduced record 1s about 1000 bits of
continous storage for an average sound of 1 second. .

g The dictionary is provided with two independent list structures
dépenaing on thé‘pﬁonetic fepresehtatioh fo the‘meséage (numbé: of
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vowels and unvoiced fricatives), and the print name of the nessage.
During the recognition phase, the dictionary organization allows a quick
candidate l;st to be constructed in the following stages:

1. Elimination of all candidates whose relati&e positions of
vowels and fricatives aregdifferent from those of the incoming message.

2, Elimination of all the candidates with‘strictly different vowel
zero-crossing characteristics,

3. Elimination of all the candidates having low-vewel similarity
scores obtained by comparison with the incoming message.

The first elimination is obtained directly from the dictionary,
which holds the relative position of vowels and fricatives for each re-
corded utterance. The second elimination is accomplished by using a
table that defines crude dissimilarity values between each pair of
vowels on the basis of their earlier classification into subcategories,
At this stage the list of candidates is reordered, so that the most si-
milar candidates are placed first. '

The thitd elimination is done by computing a similarity between the
incoming message and all the entries in the candidate list. First, a
segment synchronization procedure is called to create linkages between
the segments of the two representaticns. The similarity values obtained
for each pair of linked segments are stored for the selection process
that chooses the candidate with the higher similarity coefficient., If
one of the candidates reaches a score greater than or equal to 95 per-

cent,the selection process immediately stops and returns the candidate

,print name. Otherwise, each time a good similarity score 1is obtained

(>80 petcent) the candidate list is rearranged in order to place first




all entries having the same print name as that of the present candidate,
When the list is exhausted, the candidate with the hest score is chosen
if the similarity score is at least greater than 75 percent. If none of
the candidates presents such a score, the selection process is reini-
tiated with a new list ;f candidates having small differences 1in the
phonetic representation (number and relative position of vowels and un-
voiced fricatives). If no candidate can be found in the dictionary, it
means that the incoming message cannot be recognized, and the user is
invited to enter its print name. At this time, the dictionary is aug-

mented by the representation of the new message, which can be used

afterwards as a possible candidate for a further utterance,

2.5 Modifications.

The original Vicens' program as described above was written in
FORTRAN for the PDP-10 at the Stanford Artificial Intelligence (AI)
Project. The program was rewritten for the PDP-10 at the Institute in
SAIL, which 1s a high-level language that is a superset of ALGOL and
. that has been developed at the AI project.

Second, hardware that has performance characteristics Gery similar
to the hardware on the AI PDP-10 was designed and constructed by Ron
Wizelman of the Institute staff. There is a slight difference in the
handling of the incoming data as given by the hardware. The Vicens'
program was working within a "spacewar" environment in order to impose
priority over other users while listening to the sound- We use a high-

‘speed line that gives'good resuits at all times for a tontinuOUS input.

' 'Iq“order to allow the user not to speak as soon as the program is ready
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to listen to him, we have implemented two thresholds. One is hardware,
the other is software. The first system is a simple potentiometer that
inhibits the hardware equipment as long as the amplitudes are under a
certain value. This value is adjustable and can eventually become zero.
As soon as this threshold value is exceeded, the hardware begins to
Lrénsmit data to the program and keeps transmitting even after the am-
plitudes again drop under the threshold value. This delay, which is
also adjustable, is necessary to allow small silences in the utterance
without interrupting the transmission., Our first experiments with this
hardware threshold have shown some loss of data in the very beginning of
each utterance, due to the positive value-fixed threshold.

In order to avoid this loss of¥data, we experimented with kicking
the microphone that started the hardware and speaking just after the
kick. The effect of the kick has been eliminated by software and so no
data were lost. Besides the inelegance of such a method, we found it
difficult to apply to all kinds of microphones, especially telephones.
S0 we introduced the following process. The hardware threshold is set
to zero, so the hardware 1s always ready to transmit data. The software
procadure reads only three samples of sound (0,03 sec) and computes the
;veraging amplitudes and zero-crossings. If these valuss are under a
threshold, three new samples are processed, and so on, If the values
are above the threshold, the procedure fills up the input buffer (1.5
sec). The 'tail' of the utterance, i.e., samples’with low amplitudes at
the end of the message, is then eliminated so that only the réleVant
vélues are sqbsequently proceSSed'by the segmentation procedure, 'Whep',,f“'"‘
“the comput‘er‘ié ‘overloadéd; this m'et’hOd‘ (ﬁhe 'Vs’of‘t‘ware kick!') ‘éyom‘eti'm”e‘s
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produces a loss of one sample (10 ms), which is actually the smallest
amount of data that can be lost,

The other differences we introduced in the Vicens' program concern
the selection process. First, the value of the similarity threshold (95
in the original program) which is used when one examines the candi;;té
list, was changed by an interactive command. We are concerned with the
best choice of the threshold value for different sets of words. Intui-
tively, the larger the value, the more demanding the system when it
tries to accept a candidate as a proper answer. Sets of the words with
large phonetic dissimilarity can be processed with a low threshold and
a consequent saving of time,.

The second difference is related to the use of the system in peda-
gogical experiments in elementary arithmetic. The purpose of these ex:-
periments is to ask the user the results of operations on numbers. In
this case, for each question there exists one and only one possible
answer. When the answer is incorrect, we do not try to recognize the
specific value that was uttered. For example, after the question "how
much is three plus four?" we are only interested in the compérison he-
tween the uttered answer and 7. If it is not 7 we do not try to know
whether it was 6, 8, or something else. In this situation, the recog-
nition process can be considerably accelerated by limiting the candidate
list to those that have the same print name as the expected answer. We
found that in this way the answer processing is faster than the time
spent to utter it, which offers some hope for communication by telephone’
when the'naturg of the messages to be recognized is well adapted to sﬁch

a discrimination.
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